Travelling wave solutions for a nonlinear variant of the PHI-four equation
نویسندگان
چکیده
منابع مشابه
Exact travelling wave solutions in a nonlinear elastic rod equation
In this paper,an extended mapping method with symbolic computation is developed to obtain new periodic wave solutions in terms of Jacobin elliptic function for nonlinear evolution equations arising in mathematical physics.As a result,many exact travelling wave solutions are obtained which include new solitary wave solutions,triangular and hyperbolic functions.Solutions in the limiting cases hav...
متن کاملExact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation
The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملExact travelling wave solutions for the modified Novikov equation ∗
which was discovered in a symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity. By using the perturbation symmetry approach [7], Novikov found the first few symmetries and a scalar Lax pair for Eq. (1), then proved that it is integrable [9]. Hone and Wang [5] gave a matrix Lax pair for the Novikov equation and found its infinitely many conserved quantities, as well as a...
متن کاملExact Travelling Wave Solutions of a Beam Equation
In this paper we make a full analysis of the symmetry reductions of a beam equation by using the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave reductions depending on the form of an arbitrary function. We have found several new classes of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic functions, W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2008.03.011